123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320 |
- var __extends = (this && this.__extends) || (function () {
- var extendStatics = function (d, b) {
- extendStatics = Object.setPrototypeOf ||
- ({ __proto__: [] } instanceof Array && function (d, b) { d.__proto__ = b; }) ||
- function (d, b) { for (var p in b) if (Object.prototype.hasOwnProperty.call(b, p)) d[p] = b[p]; };
- return extendStatics(d, b);
- };
- return function (d, b) {
- if (typeof b !== "function" && b !== null)
- throw new TypeError("Class extends value " + String(b) + " is not a constructor or null");
- extendStatics(d, b);
- function __() { this.constructor = d; }
- d.prototype = b === null ? Object.create(b) : (__.prototype = b.prototype, new __());
- };
- })();
- import { hex2b64 } from "./lib/jsbn/base64";
- import { Hex } from "./lib/asn1js/hex";
- import { Base64 } from "./lib/asn1js/base64";
- import { ASN1 } from "./lib/asn1js/asn1";
- import { RSAKey } from "./lib/jsbn/rsa";
- import { parseBigInt } from "./lib/jsbn/jsbn";
- import { KJUR } from "./lib/jsrsasign/asn1-1.0";
- /**
- * Create a new JSEncryptRSAKey that extends Tom Wu's RSA key object.
- * This object is just a decorator for parsing the key parameter
- * @param {string|Object} key - The key in string format, or an object containing
- * the parameters needed to build a RSAKey object.
- * @constructor
- */
- var JSEncryptRSAKey = /** @class */ (function (_super) {
- __extends(JSEncryptRSAKey, _super);
- function JSEncryptRSAKey(key) {
- var _this = _super.call(this) || this;
- // Call the super constructor.
- // RSAKey.call(this);
- // If a key key was provided.
- if (key) {
- // If this is a string...
- if (typeof key === "string") {
- _this.parseKey(key);
- }
- else if (JSEncryptRSAKey.hasPrivateKeyProperty(key) ||
- JSEncryptRSAKey.hasPublicKeyProperty(key)) {
- // Set the values for the key.
- _this.parsePropertiesFrom(key);
- }
- }
- return _this;
- }
- /**
- * Method to parse a pem encoded string containing both a public or private key.
- * The method will translate the pem encoded string in a der encoded string and
- * will parse private key and public key parameters. This method accepts public key
- * in the rsaencryption pkcs #1 format (oid: 1.2.840.113549.1.1.1).
- *
- * @todo Check how many rsa formats use the same format of pkcs #1.
- *
- * The format is defined as:
- * PublicKeyInfo ::= SEQUENCE {
- * algorithm AlgorithmIdentifier,
- * PublicKey BIT STRING
- * }
- * Where AlgorithmIdentifier is:
- * AlgorithmIdentifier ::= SEQUENCE {
- * algorithm OBJECT IDENTIFIER, the OID of the enc algorithm
- * parameters ANY DEFINED BY algorithm OPTIONAL (NULL for PKCS #1)
- * }
- * and PublicKey is a SEQUENCE encapsulated in a BIT STRING
- * RSAPublicKey ::= SEQUENCE {
- * modulus INTEGER, -- n
- * publicExponent INTEGER -- e
- * }
- * it's possible to examine the structure of the keys obtained from openssl using
- * an asn.1 dumper as the one used here to parse the components: http://lapo.it/asn1js/
- * @argument {string} pem the pem encoded string, can include the BEGIN/END header/footer
- * @private
- */
- JSEncryptRSAKey.prototype.parseKey = function (pem) {
- try {
- var modulus = 0;
- var public_exponent = 0;
- var reHex = /^\s*(?:[0-9A-Fa-f][0-9A-Fa-f]\s*)+$/;
- var der = reHex.test(pem) ? Hex.decode(pem) : Base64.unarmor(pem);
- var asn1 = ASN1.decode(der);
- // Fixes a bug with OpenSSL 1.0+ private keys
- if (asn1.sub.length === 3) {
- asn1 = asn1.sub[2].sub[0];
- }
- if (asn1.sub.length === 9) {
- // Parse the private key.
- modulus = asn1.sub[1].getHexStringValue(); // bigint
- this.n = parseBigInt(modulus, 16);
- public_exponent = asn1.sub[2].getHexStringValue(); // int
- this.e = parseInt(public_exponent, 16);
- var private_exponent = asn1.sub[3].getHexStringValue(); // bigint
- this.d = parseBigInt(private_exponent, 16);
- var prime1 = asn1.sub[4].getHexStringValue(); // bigint
- this.p = parseBigInt(prime1, 16);
- var prime2 = asn1.sub[5].getHexStringValue(); // bigint
- this.q = parseBigInt(prime2, 16);
- var exponent1 = asn1.sub[6].getHexStringValue(); // bigint
- this.dmp1 = parseBigInt(exponent1, 16);
- var exponent2 = asn1.sub[7].getHexStringValue(); // bigint
- this.dmq1 = parseBigInt(exponent2, 16);
- var coefficient = asn1.sub[8].getHexStringValue(); // bigint
- this.coeff = parseBigInt(coefficient, 16);
- }
- else if (asn1.sub.length === 2) {
- if (asn1.sub[0].sub) {
- // Parse ASN.1 SubjectPublicKeyInfo type as defined by X.509
- var bit_string = asn1.sub[1];
- var sequence = bit_string.sub[0];
- modulus = sequence.sub[0].getHexStringValue();
- this.n = parseBigInt(modulus, 16);
- public_exponent = sequence.sub[1].getHexStringValue();
- this.e = parseInt(public_exponent, 16);
- }
- else {
- // Parse ASN.1 RSAPublicKey type as defined by PKCS #1
- modulus = asn1.sub[0].getHexStringValue();
- this.n = parseBigInt(modulus, 16);
- public_exponent = asn1.sub[1].getHexStringValue();
- this.e = parseInt(public_exponent, 16);
- }
- }
- else {
- return false;
- }
- return true;
- }
- catch (ex) {
- return false;
- }
- };
- /**
- * Translate rsa parameters in a hex encoded string representing the rsa key.
- *
- * The translation follow the ASN.1 notation :
- * RSAPrivateKey ::= SEQUENCE {
- * version Version,
- * modulus INTEGER, -- n
- * publicExponent INTEGER, -- e
- * privateExponent INTEGER, -- d
- * prime1 INTEGER, -- p
- * prime2 INTEGER, -- q
- * exponent1 INTEGER, -- d mod (p1)
- * exponent2 INTEGER, -- d mod (q-1)
- * coefficient INTEGER, -- (inverse of q) mod p
- * }
- * @returns {string} DER Encoded String representing the rsa private key
- * @private
- */
- JSEncryptRSAKey.prototype.getPrivateBaseKey = function () {
- var options = {
- array: [
- new KJUR.asn1.DERInteger({ int: 0 }),
- new KJUR.asn1.DERInteger({ bigint: this.n }),
- new KJUR.asn1.DERInteger({ int: this.e }),
- new KJUR.asn1.DERInteger({ bigint: this.d }),
- new KJUR.asn1.DERInteger({ bigint: this.p }),
- new KJUR.asn1.DERInteger({ bigint: this.q }),
- new KJUR.asn1.DERInteger({ bigint: this.dmp1 }),
- new KJUR.asn1.DERInteger({ bigint: this.dmq1 }),
- new KJUR.asn1.DERInteger({ bigint: this.coeff }),
- ],
- };
- var seq = new KJUR.asn1.DERSequence(options);
- return seq.getEncodedHex();
- };
- /**
- * base64 (pem) encoded version of the DER encoded representation
- * @returns {string} pem encoded representation without header and footer
- * @public
- */
- JSEncryptRSAKey.prototype.getPrivateBaseKeyB64 = function () {
- return hex2b64(this.getPrivateBaseKey());
- };
- /**
- * Translate rsa parameters in a hex encoded string representing the rsa public key.
- * The representation follow the ASN.1 notation :
- * PublicKeyInfo ::= SEQUENCE {
- * algorithm AlgorithmIdentifier,
- * PublicKey BIT STRING
- * }
- * Where AlgorithmIdentifier is:
- * AlgorithmIdentifier ::= SEQUENCE {
- * algorithm OBJECT IDENTIFIER, the OID of the enc algorithm
- * parameters ANY DEFINED BY algorithm OPTIONAL (NULL for PKCS #1)
- * }
- * and PublicKey is a SEQUENCE encapsulated in a BIT STRING
- * RSAPublicKey ::= SEQUENCE {
- * modulus INTEGER, -- n
- * publicExponent INTEGER -- e
- * }
- * @returns {string} DER Encoded String representing the rsa public key
- * @private
- */
- JSEncryptRSAKey.prototype.getPublicBaseKey = function () {
- var first_sequence = new KJUR.asn1.DERSequence({
- array: [
- new KJUR.asn1.DERObjectIdentifier({ oid: "1.2.840.113549.1.1.1" }),
- new KJUR.asn1.DERNull(),
- ],
- });
- var second_sequence = new KJUR.asn1.DERSequence({
- array: [
- new KJUR.asn1.DERInteger({ bigint: this.n }),
- new KJUR.asn1.DERInteger({ int: this.e }),
- ],
- });
- var bit_string = new KJUR.asn1.DERBitString({
- hex: "00" + second_sequence.getEncodedHex(),
- });
- var seq = new KJUR.asn1.DERSequence({
- array: [first_sequence, bit_string],
- });
- return seq.getEncodedHex();
- };
- /**
- * base64 (pem) encoded version of the DER encoded representation
- * @returns {string} pem encoded representation without header and footer
- * @public
- */
- JSEncryptRSAKey.prototype.getPublicBaseKeyB64 = function () {
- return hex2b64(this.getPublicBaseKey());
- };
- /**
- * wrap the string in block of width chars. The default value for rsa keys is 64
- * characters.
- * @param {string} str the pem encoded string without header and footer
- * @param {Number} [width=64] - the length the string has to be wrapped at
- * @returns {string}
- * @private
- */
- JSEncryptRSAKey.wordwrap = function (str, width) {
- width = width || 64;
- if (!str) {
- return str;
- }
- var regex = "(.{1," + width + "})( +|$\n?)|(.{1," + width + "})";
- return str.match(RegExp(regex, "g")).join("\n");
- };
- /**
- * Retrieve the pem encoded private key
- * @returns {string} the pem encoded private key with header/footer
- * @public
- */
- JSEncryptRSAKey.prototype.getPrivateKey = function () {
- var key = "-----BEGIN RSA PRIVATE KEY-----\n";
- key += JSEncryptRSAKey.wordwrap(this.getPrivateBaseKeyB64()) + "\n";
- key += "-----END RSA PRIVATE KEY-----";
- return key;
- };
- /**
- * Retrieve the pem encoded public key
- * @returns {string} the pem encoded public key with header/footer
- * @public
- */
- JSEncryptRSAKey.prototype.getPublicKey = function () {
- var key = "-----BEGIN PUBLIC KEY-----\n";
- key += JSEncryptRSAKey.wordwrap(this.getPublicBaseKeyB64()) + "\n";
- key += "-----END PUBLIC KEY-----";
- return key;
- };
- /**
- * Check if the object contains the necessary parameters to populate the rsa modulus
- * and public exponent parameters.
- * @param {Object} [obj={}] - An object that may contain the two public key
- * parameters
- * @returns {boolean} true if the object contains both the modulus and the public exponent
- * properties (n and e)
- * @todo check for types of n and e. N should be a parseable bigInt object, E should
- * be a parseable integer number
- * @private
- */
- JSEncryptRSAKey.hasPublicKeyProperty = function (obj) {
- obj = obj || {};
- return obj.hasOwnProperty("n") && obj.hasOwnProperty("e");
- };
- /**
- * Check if the object contains ALL the parameters of an RSA key.
- * @param {Object} [obj={}] - An object that may contain nine rsa key
- * parameters
- * @returns {boolean} true if the object contains all the parameters needed
- * @todo check for types of the parameters all the parameters but the public exponent
- * should be parseable bigint objects, the public exponent should be a parseable integer number
- * @private
- */
- JSEncryptRSAKey.hasPrivateKeyProperty = function (obj) {
- obj = obj || {};
- return (obj.hasOwnProperty("n") &&
- obj.hasOwnProperty("e") &&
- obj.hasOwnProperty("d") &&
- obj.hasOwnProperty("p") &&
- obj.hasOwnProperty("q") &&
- obj.hasOwnProperty("dmp1") &&
- obj.hasOwnProperty("dmq1") &&
- obj.hasOwnProperty("coeff"));
- };
- /**
- * Parse the properties of obj in the current rsa object. Obj should AT LEAST
- * include the modulus and public exponent (n, e) parameters.
- * @param {Object} obj - the object containing rsa parameters
- * @private
- */
- JSEncryptRSAKey.prototype.parsePropertiesFrom = function (obj) {
- this.n = obj.n;
- this.e = obj.e;
- if (obj.hasOwnProperty("d")) {
- this.d = obj.d;
- this.p = obj.p;
- this.q = obj.q;
- this.dmp1 = obj.dmp1;
- this.dmq1 = obj.dmq1;
- this.coeff = obj.coeff;
- }
- };
- return JSEncryptRSAKey;
- }(RSAKey));
- export { JSEncryptRSAKey };
|